в чём причина многообразия веществ? помогите срочно, завтра химия, а я не могу найти ответ на этот вопрос! и получил лучший ответ

Ответ от Подсолнушек[гуру]
Причины многообразия органических веществ: химическое строение, элементарный (качественный) состав. Примеры углеводорода и кислородсодержащих органических соединений
К органическим веществам относят углеродсодержащие вещества, преимущественно образующиеся в живых организмах. На сегодня, многие органические вещества могут быть получены искусственно в лаборатории. Синтезировано большое количество органических соединений, не встречающихся в природе.
Общее число известных органических веществ превышает 10 миллионов, в то время как неорганических – около 100 тысяч. Такое многообразие органических соединений связано со способностью атомов углерода соединяться в цепи различной длины. Связи между атомами углерода могут быть одинарными и кратными: двойными, тройными. При этом вещества могут иметь одинаковую молекулярную формулу, но разное строение и свойства (это явление получило название изомери́и) .
В состав органических веществ входят углерод, водород, кислород, а также азот, фосфор, сера. Кроме того, могут входить практически любые элементы.
Углеводороды – вещества, состоящие из двух элементов: углерода и водорода.
Метан (его также называют болотный, рудничный газ, т. к. он образуется при разложении органических остатков на дне болот, а также выделяется из пластов каменного угля в рудниках) . Состоит из одного атома углерода, соединенного ковалентными связями с четырьмя атомами водорода. Молекулярная формула CH4. Структурная формула показывает порядок связи атомов в молекуле:
H
l
H – C – H
l
H Угол между связями составляет 120º (электронные пары, образующие связь отталкиваются и располагаются на максимальном расстоянии друг от друга) .
Ацетилен C2H2 содержит тройную связь:
H – C ≡ C – H
В качестве примера кислородсодержащих органических веществ можно назвать метиловый (древесный) спирт CH3OH (систематическое название метанол) ,
этиловый спирт C2H5OH (этанол) ,
уксусную кислоту CH3COOH
Готовый ответ на уроке.

Ответ от Ёидор Сидоров [гуру]
В том, что даже в земных условиях молекулы могут соединяться в немыслимо большое количество комбинаций друг с дружкой. А если взять их возможности на нашем не шибко горячем Солнышке? Это в миллиарды раз немыслимее множество получается? А если взять горячие солнышки других галактик? А если еще более горячие солнышки других вселенных? А? Вот то -то и оно.


Ответ от -=TeRNoL=- [новичек]
Причина в различных молекулярных цепочках вроде)

Причины многообразия химических веществ

В настоящее время причины многообразия химических веществ принято объяснять двумя явлениями - изомерией и аллотропией.

Вещества, имеющие одинаковый состав, но разное химическое или пространственное строение, а следовательно, и разные свойства, называют изомерами .

Основные виды изомерии :

Структурная изомерия, при которой вещества различаются порядком связи атомов в молекулах: изомерия углеродного скелета

изомерия положения кратных связей:

заместителей

изомерия положения функциональных групп

АЛЛОТРОПИЯ, существование химических элементов в двух или более молекулярных либо кристаллических формах. Например, аллотропами являются обычный кислород O2 и озон O3; в этом случае аллотропия обусловлена образованием молекул с разным числом атомов. Чаще всего аллотропия связана с образованием кристаллов различных модификаций. Углерод существует в двух четко различающихся кристаллических аллотропных формах: в виде алмаза и графита. Раньше полагали, что т.н. аморфные формы углерода, древесный уголь и сажа, - тоже его аллотропные модификации, но оказалось, что они имеют такое же кристаллическое строение, что и графит. Сера встречается в двух кристаллических модификациях: ромбической (a-S) и моноклинной (b-S); известны по крайней мере три ее некристаллические формы: l-S, m-S и фиолетовая. Для фосфора хорошо изучены белая и красная модификации, описан также черный фосфор; при температуре ниже -77° С существует еще одна разновидность белого фосфора. Обнаружены аллотропные модификации As, Sn, Sb, Se, а при высоких температурах - железа и многих других элементов.

Энантиотропные и монотропные формы. Кристаллические модификации химического элемента могут переходить одна в другую по-разному, что можно проиллюстрировать на примерах серы и фосфора. При обычной температуре стабильной является ромбическая модификация серы, которая при нагревании до 95,6° С и давлении 1 атм переходит в моноклинную форму. Последняя при охлаждении ниже 95,6° С вновь переходит в ромбическую форму. Таким образом, переход одной формы серы в другую происходит при одной и той же температуре, и сами формы называются энантиотропными. Другая картина наблюдается для фосфора. Белая его форма может превращаться в красную почти при любой температуре. При температурах ниже 200° С процесс протекает очень медленно, но его можно ускорить с помощью катализатора, например иода. Обратный же переход красного фосфора в белый невозможен без образования промежуточной газовой фазы. Красная форма стабильна во всем диапазоне температур, где она находится в твердом состоянии, тогда как белая нестабильна при любой температуре (метастабильна). Переход из нестабильной формы в стабильную в принципе возможен при любой температуре, а обратный - нет, т.е. определенная точка перехода отсутствует. Здесь мы имеем дело с монотропными модификациями элемента. Две известные модификации олова энантиотропны. Модификации углерода - графит и алмаз - монотропны, причем стабильной является форма графита. Красная и белая формы фосфора монотропны, а две белые его модификации энантиотропны, температура перехода равна -77° С при давлении 1 атм.

«Здесь, как и везде, разграничения и рубрики принадлежат не природе,
не сущности, а человеческому суждению которому
они нужны для собственного удобства»
А. М. Бутлеров.

Впервые термин «органическая химия » появился в 1808 году в «учебнике химии» шведского учёного И.Я. Берцелиуса. Название «органические соединения» появилось немного раньше. Учёные той эпохи разделили вещества на две группы достаточно условно: они считали, что живые существа состоят из особых органических с оединений , а объекты неживой природы – из неорганических .

Для многих простых веществ известны их аллотропные формы существования: углерод - в форме графита и алмаза и т.д. В настоящее время известно около 400 аллотропных видоизменений простых веществ.

Многообразие сложных веществ обусловлено их различным качественным и количественным составом. Например, известно для азота пять форм оксидов: N 2 O, NO, N 2 O 3 , NO 2 , N 2 O 5 ; для водорода две формы: Н 2 О и Н 2 О 2 .

Принципиальных различий между органическими и неорганическими веществами нет. Они отличаются лишь некоторыми особенностями.

Большинство неорганических веществ имеет немолекулярное строение, поэтому они обладают высокими температурами плавления и кипения. Неорганические вещества не содержат углерода. К неорганическим веществам относятся: металлы (Ca, K, Na и др.), неметаллы, благородные газы (He, Ne, Ar, Kr, Xe и др.), амфотерные простые вещеcтва (Fe, Al, Mn и др.), оксиды (различные соединения с кислородом), гидроксиды, соли и бинарные соединения.

К неорганическим веществам относится вода. Она является универсальным растворителем и имеет высокие теплоёмкость и теплопроводность. Вода – это источник кислорода и водорода; основная среда для протекания биохимических и химических реакций.

Органические вещества, как правило, молекулярного строения, имеют низкие температуры плавления, легко разлагаются при нагревании. В состав молекул всех органических веществ входит углерод (за исключением карбидов, карбонатов, оксидов углерода, углеродосодержащих газов и цианидов). Химические связи в молекулах органических соединений преимущественно ковалентные.

Уникальное свойство углерода образовывать цепочки из атомов дает возможность образовывать огромное количество уникальных соединений.

Большинство основных классов органических веществ биологического происхождения. К ним относятся белки, углеводы, нуклеиновые кислоты, липиды. Эти соединения кроме углерода содержат водород, азот, кислород, серу и фосфор.

Углеродистые соединения распространены в природе. Они входят в состав растительного и животного мира, а значит, обеспечивают одеждой, обувью, топливом, лекарствами, пищей, красителями и др.
Повседневный опыт показывает, что почти все органические вещества, например растительные масла, животные жиры, ткани, древесина, бумага, природные газы не выдерживают повышенных температур и относительно легко разлагаются или горят, в то время как большинство неорганических веществ выдерживают. Таким образом, органические вещества менее прочны, чем неорганические.
Синтез органических из неорганических веществ.
В 1828 году немецкому химику Ф. Вёлеру удалось искусственно получить мочевину . Исходным веществом при этом была неорганическая соль - цианид калия(KCN), при окислении которого образуется цианат калия(KOCN). Обменным разложением цианата калия с сульфатом аммония получается цианат аммония, который при нагревании превращается в мочевину:

В 1842 г. русский ученый Н. Н. Зинин синтезировал анилин , который получали раньше только из природного красителя. В 1854 г. французский ученый М.Бертло получил вещество, сходное с жирами , а в 1861 г. выдающийся русский химик А. М. Бутлеров - сахаристое вещество.

К органическим веществам относят углеродсодержащие вещества, преимущественно образующиеся в живых организмах. На сегодня, многие органические вещества могут быть получены искусственно в лаборатории. Синтезировано большое количество органических соединений, не встречающихся в природе.

Общее число известных органических веществ превышает 10 миллионов, в то время как неорганических - около 100 тысяч. Такое многообразие органических соединений связано со способностью атомов углерода соединяться в цепи различной длины . Связи между атомами углерода могут быть одинарными и кратными: двойными, тройными. При этом вещества могут иметь одинаковую молекулярную формулу, но разное строение и свойства (это явление получило название изомери́и).

В состав органических веществ входят углерод, водород, кислород, а также азот, фосфор, сера. Кроме того, могут входить практически любые элементы.

Углеводороды - вещества, состоящие из двух элементов: углерода и водорода.

Метан (его также называют болотный, рудничный газ, т. к. он образуется при разложении органических остатков на дне болот, а также выделяется из пластов каменного угля в рудниках). Состоит из одного атома углерода, соединенного ковалентными связями с четырьмя атомами водорода. Молекулярная формула CH 4 . Структурная формула показывает порядок связи атомов в молекуле:
H
l
H – C – H
l
H

Чтобы правильно составлять структурные формулы органических веществ, нужно помнить, что атомы углерода образуют по 4 связи , изображаемые черточками (т. е. валентность углерода по числу связей равна четырем. В органической химии преимущественно используется именно валентность по числу связей).

В 10–11 классах изучается, что молекула метана имеет форму треугольной пирамиды - тетраэдра, подобно знаменитым египетским пирамидам.

Этилен C 2 H 4 состоит из двух атомов углерода, соединенных двойной связью:

Угол между связями составляет 120º (электронные пары,образующие связь отталкиваются и располагаются на максимальном расстоянии друг от друга).

Ацетилен C 2 H 2 содержит тройную связь:
H – C ≡ C – H

В качестве примера кислородсодержащих органических веществ можно назвать метиловый (древесный) спирт CH 3 OH (систематическое название метанол),

этиловый спирт C 2 H 5 OH (этанол),

уксусную кислоту CH 3 COOH

(кислотный остаток уксусной кислоты CH 3 COO − обычно находится в нижней строчке таблицы растворимости, поэтому если забудете формулу, возьмите таблицу растворимости - она должна быть на экзамене - и добавьте к кислотному остатку водород)

Вещество в химии -- физическая субстанция со специфическим химическим составом. В философском словаре Григория Теплова в 1751 году словом вещество переводился латинский термин Substantia.Вещество в современной физике как правило понимается как вид материи, состоящий из фермионов или содержащий фермионы наряду с бозонами; обладает массой покоя, в отличие от некоторых типов полей, как например электромагнитное. Обычно (при сравнительно низких температурах и плотностях) вещество состоит из частиц, среди которых чаще всего встречаются электроны, протоны и нейтроны. Последние два образуют атомные ядра, а все вместе -- атомы (атомное вещество), из которых -- молекулы, кристаллы и т. д. В некоторых условиях, как например в нейтронных звездах, могут существовать достаточно необычные виды вещества. Вещество в биологии -- материя, образующая ткани организмов, входящая в состав органелл клеток. Неорганические вещества- химическое вещество, химическое соединение, которое не является органическим, то есть оно не содержит углерода: Соли, Кислоты, Основания, Оксиды. Все неорганические соединения делятся на две большие группы: Простые вещества -- состоят из атомов одного элемента; Сложные вещества -- состоят из атомов двух или более элементов.Простые вещества по химическим свойствам делятся на: металлы (Li, Na, K, Mg, Ca и др.)неметаллы (F2, Cl2, O2, S, P и др.); амфотерные простые вещества (Zn, Al, Fe, Mn и др.); благородные газы (He, Ne, Ar, Kr, Xe, Rn).Сложные вещества по химическим свойствам делятся на: оксиды: осномвные оксиды (CaO, Na2O и др.); кислотные оксиды (CO2, SO3 и др.); амфотерные оксиды (ZnO, Al2O3 и др.); двойные оксиды (Fe3O4 и др.); несолеобразующие оксиды (CO, NO и др.); Гидроксиды; основания (NaOH, Ca(OH)2 и др.); кислоты (H2SO4, HNO3 и др.); мфотерные гидроксиды (Zn(OH)2, Al(OH)3 и др.); соли: средние соли (Na2SO4, Ca3(PO4)2 и др.); кислые соли (NaHSO3, CaHPO4 и др.); осномвные соли (Cu2CO3(OH)2 и др.); двойные и/или комплексные соли (CaMg(CO3)2, K3, KFeIII и др.); бинарные соединения: бескислородные кислоты (HCl, H2S и др.)бескислородные соли (NaCl, CaF2 и др.); прочие бинарные соединения (AlH3, CaC2, CS2 и др.).Орган. вещества-класс химических соединений, в состав которых входит углерод (за исключением карбидов, угольной кислоты, карбонатов, оксидовуглерода и цианидов).: Амины, Кетоны и альдегиды, Нитрилы, Сероорганические соединения, Спирты, Углеводороды, Простые и сложные эфиры, Аминокислоты Основные классы органических соединений биологического происхождения -- белки, липиды, углеводы, нуклеиновые кислоты -- содержат, помимо углерода, преимущественно водород, азот, кислород, серу и фосфор. Именно поэтому «классические» органические соединения содержат прежде всего водород, кислород, азот и серу -- несмотря на то, что элементами, составляющими органические соединения, помимо углерода могут быть практически любые элементы.Соединения углерода с другими элементами составляют особый класс органических соединений -- элементоорганические соединения. Металлоорганические соединения содержат связь металл-углерод и составляют обширный подкласс элементоорганических соединений. Существует несколько важных свойств, которые выделяют органические соединения в отдельный, ни на что не похожий класс химических соединений. Различная топология образования связей между атомами, образующими органические соединения (прежде всего, атомами углерода), приводит к появлению изомеров -- соединений, имеющих один и тот же состав и молекулярную массу, но обладающих различными физико-химическими свойствами. Данное явление носит название изомерии. Явление гомологии -- существование рядов органических соединений, в которых формула любых двух соседей ряда (гомологов) отличается на одну и ту же группу -- гомологическую разницу CH2. Целый ряд физико-химических свойств в первом приближении изменяется симбатно по ходу гомологического ряда. Это важное свойство используется в материаловедении при поиске веществ с заранее заданными свойствами